IP Tables Rules Most Frequently used for secure network firewall configuration setting

IP Tables rules, some of the most frequent iptable rules used for secure network firewall configuration setting on linux  


Introduction

Iptables is a Linux command line firewall which allows us to manage incoming and outgoing network traffic though a set of configurable table rules.

Iptables uses a set of tables which container chains that contain set of built-in or user defined rules. 

There are mainly 03 types of tables rules:

    1. FILTER – this is the default table, which contains the built in chains.
      1. INPUT  – packages destined for local sockets
      2. FORWARD – packets routed through the system
      3. OUTPUT – packets generated locally
    2. NAT – a table that is consulted when a packet tries to create a new connection. It has the following built-in.
      1. PREROUTING – used for altering a packet as soon as it’s received
      2. OUTPUT – used for altering locally generated packets
      3. POSTROUTING – used for altering packets as they are about to go out
    3. MANGLE – this table is used for packet altering. Until kernel version 2.4 this table had only two chains, but they are now 5:
      1. PREROUTING – for altering incoming connections
      2. OUTPUT – for altering locally generated  packets
      3. INPUT – for incoming packets
      4. POSTROUTING – for altering packets as they are about to go out
      5. FORWARD – for packets routed through the box.
1. Delete Existing Rules

Before you start building new set of rules, you might want to clean­up all the default rules, and existing rules. Use the iptables flush command as shown below to do this.

iptables -F (or)      iptables --flush

2. Set Default Chain Policies

The default chain policy is ACCEPT. Change this to DROP for all INPUT, FORWARD, and OUTPUT  
chains as shown below.
iptables -P INPUT DROP
iptables -P FORWARD DROP
iptables -P OUTPUT DROP
When   you   make   both   INPUT,   and   OUTPUT   chain’s   default   policy   as   DROP,   for   every   firewall   rule 
requirement you have, you should define two rules. i.e., one for incoming and one for outgoing. In all our  
examples below, we have two rules for each scenario, as we’ve set DROP as default policy for both 
INPUT and OUTPUT chain.
If you trust your internal users, you can omit the last line above. i.e., do not DROP all outgoing packets by 
default. In that case, for every firewall rule requirement you have, you just have to define only one rule.  
i.e., define a rule only for incoming, as the outgoing is ACCEPT for all packets.

3. Block a Specific ip­address 

Before we proceed further with other examples, if you want to block a specific ip­address, you should do  
that first as shown below. Change the “x.x.x.x” in the following example to the specific ip­address that you 
like to block.
BLOCK_THIS_IP="x.x.x.x"
iptables -A INPUT -s "$BLOCK_THIS_IP" -j DROP
This is helpful when you find some strange activities from a specific ip­address in your log files, and you  want to temporarily block that ip­address while you do further research. You can also use one of the following variations, which blocks only TCP traffic on eth0 connection for this ip­address. 

iptables -A INPUT -i eth0 -s "$BLOCK_THIS_IP" -j DROP
iptables -A INPUT -i eth0 -p tcp -s "$BLOCK_THIS_IP" -j DROP

4. Allow ALL Incoming SSH

The following rules allow ALL incoming ssh connections on eth0 interface.
iptables -A INPUT -i eth0 -p tcp --dport 22 -m state --state NEW,ESTABLISHED
-j ACCEPT
iptables -A OUTPUT -o eth0 -p tcp --sport 22 -m state --state ESTABLISHED -j ACCEPT

5. Allow Incoming SSH only from a Specific Network

The following rules allow incoming ssh connections only from 192.168.100.X network.
iptables -A INPUT -i eth0 -p tcp -s 192.168.100.0/24 --dport 22 -m state
--state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -o eth0 -p tcp --sport 22 -m state --state ESTABLISHED -j
ACCEPT
In the above example, instead of /24, you can also use the full subnet mask. i.e., 
“192.168.100.0/255.255.255.0′′.

6. Allow Incoming HTTP and HTTPS

The following rules allow all incoming web traffic. i.e., HTTP traffic to port 80.
iptables -A INPUT -i eth0 -p tcp --dport 80 -m state --state NEW,ESTABLISHED
-j ACCEPT iptables -A OUTPUT -o eth0 -p tcp --sport 80 -m state --state ESTABLISHED -j ACCEPT 
The following rules allow all incoming secure web traffic. i.e., HTTPS traffic to port 443.
iptables -A INPUT -i eth0 -p tcp --dport 443 -m state --state NEW,ESTABLISHED
-j ACCEPT
iptables -A OUTPUT -o eth0 -p tcp --sport 443 -m state --state ESTABLISHED -j
ACCEPT

7. Combine Multiple Rules Together using MultiPorts

When  you are allowing  incoming connections  from  outside world  to multiple ports,  instead  of writing  individual rules for each and every port, you can combine them together using the multiport extension as shown below. The following example allows all incoming SSH, HTTP and HTTPS traffic. 
iptables -A INPUT -i eth0 -p tcp -m multiport --dports 22,80,443 -m state
--state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -o eth0 -p tcp -m multiport --sports 22,80,443 -m state
--state ESTABLISHED -j ACCEPT

8. Allow Outgoing SSH

The following rules allow outgoing ssh connection. i.e., When you ssh from inside to an outside server.
iptables -A OUTPUT -o eth0 -p tcp --dport 22 -m state --state NEW,ESTABLISHED
-j ACCEPT
iptables -A INPUT -i eth0 -p tcp --sport 22 -m state --state ESTABLISHED -j
ACCEPT
Please note that this is slightly different as compared to the incoming rule, i.e., we allow both the NEW 
and ESTABLISHED state on the OUTPUT chain, and only ESTABLISHED state on the INPUT chain. For the incoming rule, it is vice­versa.

9. Allow Outgoing SSH only to a Specific Network

The following rules allow outgoing ssh connection only to a specific network. i.e., you can ssh only to  
192.168.100.0/24 network from the inside.
iptables -A OUTPUT -o eth0 -p tcp -d 192.168.100.0/24 --dport 22 -m state
--state NEW,ESTABLISHED -j ACCEPT 
iptables -A INPUT -i eth0 -p tcp --sport 22 -m state --state ESTABLISHED -j ACCEPT

10. Allow Outgoing HTTPS

The following rules allow outgoing secure web traffic. This is helpful when you want to allow internet  
traffic for your users. On servers, these rules are also helpful when you want to use wget to download 
some files from outside.
iptables -A OUTPUT -o eth0 -p tcp --dport 443 -m state --state
NEW,ESTABLISHED -j ACCEPT
iptables -A INPUT -i eth0 -p tcp --sport 443 -m state --state ESTABLISHED -j
ACCEPT
Note: For outgoing HTTP web traffic, add two additional rules like the above, and change 443 to 80.

11. Load Balance Incoming Web Traffic

You can also load balance your incoming web traffic using iptables firewall rules.
This uses the iptables nth extension. The following example load balances the HTTPS traffic to three  
different ip­address. For every 3rd packet, it is load balanced to the appropriate server (using counter 0).
iptables -A PREROUTING -i eth0 -p tcp --dport 443 -m state --state NEW -m nth
--counter 0 --every 3 --packet 0 -j DNAT --to-destination 192.168.1.101:443
iptables -A PREROUTING -i eth0 -p tcp --dport 443 -m state --state NEW -m nth
--counter 0 --every 3 --packet 1 -j DNAT --to-destination 192.168.1.102:443
iptables -A PREROUTING -i eth0 -p tcp --dport 443 -m state --state NEW -m nth
--counter 0 --every 3 --packet 2 -j DNAT --to-destination 192.168.1.103:443

12. Allow Ping from Outside to Inside

The following rules allow outside users to be able to ping your servers.
iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT
iptables -A OUTPUT -p icmp --icmp-type echo-reply -j ACCEPT

13. Allow Ping from Inside to Outside

The following rules allow you to ping from inside to any of the outside servers.
iptables -A OUTPUT -p icmp --icmp-type echo-request -j ACCEPT
iptables -A INPUT -p icmp --icmp-type echo-reply -j ACCEPT

14. Allow Loopback Access

You should allow full loopback access on your servers. i.e., access using 127.0.0.1
iptables -A INPUT -i lo -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT

15. Allow Internal Network to External network.

On the firewall server where one ethernet card is connected to the external, and another ethernet card 
connected   to   the   internal   servers,   use   the   following   rules   to   allow   internal   network   talk   to   external 
network.  In  this  example,  eth1  is connected  to external network  (internet),   and  eth0  is  connected  to  
internal network (e.g., 192.168.1.x).
iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT

16. Allow outbound DNS

The following rules allow outgoing DNS connections.
iptables -A OUTPUT -p udp -o eth0 --dport 53 -j ACCEPT
iptables -A INPUT -p udp -i eth0 --sport 53 -j ACCEPT

17. Allow NIS Connections

If you are running NIS to manage your user accounts, you should allow the NIS connections. Even when  
the SSH connection is allowed, if you don’t allow the NIS related ypbind connections, users will not be 
able to login.
The NIS ports are dynamic. i.e., when the ypbind starts it allocates the ports.
First do a rpcinfo ­p as shown below and get the port numbers. In this example, it was using port 853 and  850. 
rpcinfo -p | grep ypbind
Now allow incoming connection to the port 111, and the ports that were used by ypbind.
iptables -A INPUT -p tcp --dport 111 -j ACCEPT
iptables -A INPUT -p udp --dport 111 -j ACCEPT
iptables -A INPUT -p tcp --dport 853 -j ACCEPT
iptables -A INPUT -p udp --dport 853 -j ACCEPT
iptables -A INPUT -p tcp --dport 850 -j ACCEPT
iptables -A INPUT -p udp --dport 850 -j ACCEPT
The above will not work when you restart the ypbind, as it will have different port numbers that time. 
There   are   two   solutions  to  this:   1)  Use   static   ip­address  for   your  NIS,   or  2)  Use   some   clever  shell  
scripting   techniques   to   automatically   grab   the   dynamic   port   number   from   the   “rpcinfo   ­p”   command  
output, and use those in the above iptables rules.

18. Allow Rsync From a Specific Network

The following rules allows rsync only from a specific network.
iptables -A INPUT -i eth0 -p tcp -s 192.168.101.0/24 --dport 873 -m state
--state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -o eth0 -p tcp --sport 873 -m state --state ESTABLISHED -j
ACCEPT

19. Allow MySQL connection only from a specific network

If you are running MySQL, typically you don’t want to allow direct connection from outside. In most cases, you might have web server running on the same server where the MySQL database runs. However  
DBAs and developers might need to login directly to the MySQL from their laptop and desktop using MySQL client. In those cases, you might want to allow your internal network to talk to the MySQL directly as shown below.
iptables -A INPUT -i eth0 -p tcp -s 192.168.100.0/24 --dport 3306 -m state
--state NEW,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -o eth0 -p tcp --sport 3306 -m state --state ESTABLISHED
-j ACCEPT

20. Allow Sendmail or Postfix Traffic

The following rules allow mail traffic. It may be sendmail or postfix.
iptables -A INPUT -i eth0 -p tcp --dport 25 -m state --state NEW,ESTABLISHED
-j ACCEPT
iptables -A OUTPUT -o eth0 -p tcp --sport 25 -m state --state ESTABLISHED -j
ACCEPT

21. Allow IMAP and IMAPS

The following rules allow IMAP/IMAP2 traffic.
iptables -A INPUT -i eth0 -p tcp --dport 143 -m state --state NEW,ESTABLISHED
-j ACCEPT
iptables -A OUTPUT -o eth0 -p tcp --sport 143 -m state --state ESTABLISHED -j
ACCEPT
The following rules allow IMAPS traffic.
iptables -A INPUT -i eth0 -p tcp --dport 993 -m state --state NEW,ESTABLISHED
-j ACCEPT
iptables -A OUTPUT -o eth0 -p tcp --sport 993 -m state --state ESTABLISHED -j
ACCEPT

22. Allow POP3 and POP3S

The following rules allow POP3 access.
iptables -A INPUT -i eth0 -p tcp --dport 110 -m state --state NEW,ESTABLISHED
-j ACCEPT
iptables -A OUTPUT -o eth0 -p tcp --sport 110 -m state --state ESTABLISHED -j
ACCEPT
The following rules allow POP3S access.
iptables -A INPUT -i eth0 -p tcp --dport 995 -m state --state NEW,ESTABLISHED
-j ACCEPT
iptables -A OUTPUT -o eth0 -p tcp --sport 995 -m state --state ESTABLISHED -j
ACCEPT

23. Prevent DoS Attack

The following iptables rule will help you prevent the Denial of Service (DoS) attack on your webserver.
iptables -A INPUT -p tcp --dport 80 -m limit --limit 25/minute --limit-burst
100 -j ACCEPT
In the above example:
• m limit: This uses the limit iptables extension
• limit 25/minute: This limits only maximum of 25 connection per minute. Change this value based 
on your specific requirement
• limit­burst   100:   This   value   indicates   that   the   limit/minute   will   be   enforced   only  after   the   total  number of connection have reached the limit­burst level.

24. Port Forwarding

The following  example  routes all traffic that comes  to the port 442, to  port  22. This means that the incoming ssh connection can come from both port 22 and 422.
iptables -t nat -A PREROUTING -p tcp -d 192.168.102.37 --dport 422 -j DNAT
--to 192.168.102.37:22
If you do the above, you also need to explicitly allow incoming connection on the port 422.
iptables -A INPUT -i eth0 -p tcp --dport 422 -m state --state NEW,ESTABLISHED
-j ACCEPT
iptables -A OUTPUT -o eth0 -p tcp --sport 422 -m state --state ESTABLISHED -j
ACCEPT

25. Log Dropped Packets

You might also want to log all the dropped packets. These rules should be at the bottom.
First, create a new chain called LOGGING.
iptables -N LOGGING
Next, make sure all the remaining incoming connections jump to the LOGGING chain as shown below.
iptables -A INPUT -j LOGGING
Next, log these packets by specifying a custom “log­prefix”.
iptables -A LOGGING -m limit --limit 2/min -j LOG --log-prefix "IPTables
Packet Dropped: " --log-level 7
Finally, drop these packets.
iptables -A LOGGING -j DROP
















Previous Post
Next Post
Related Posts

0 Comments: